

ICSE 2025 47th International Conference on Software Engineering

Sun 27 April - Sat 3 May 2025 Ottawa, Ontario, Canada

BSODiag: A Global Diagnosis Framework for Batch Servers Outage in Large-scale Cloud Infrastructure Systems

Tao Duan, Runqing Chen, Pinghui Wang*, Junzhou Zhao*,

Jiongzhou Liu, Shujie Han, Yi Liu and Fan Xu Xi'an Jiaotong University, Alibaba Cloud Intelligence Group

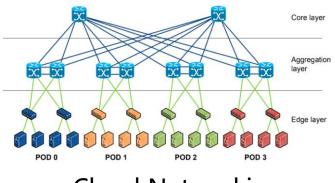
Outline

☐ Background

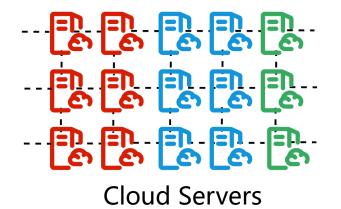
D Empirical Observations & Problem Formulation

Methodology Design

D Evaluation

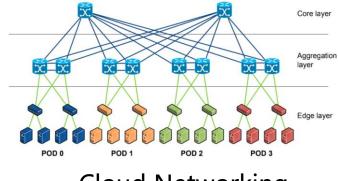

D Conclusion

Background

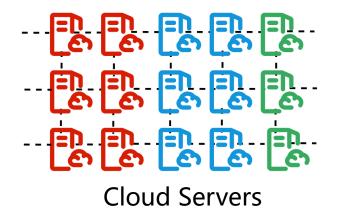

□ Cloud Infrastructure Systems (CIS)

Internet Data Center (IDC)

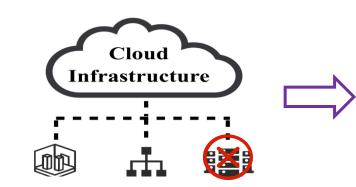
Cloud Networking



Background


□ Cloud Infrastructure Systems (CIS)

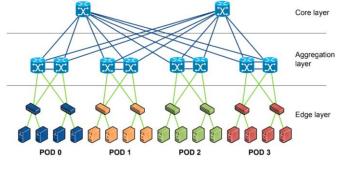
Internet Data Center (IDC)



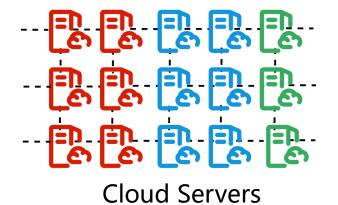
Cloud Networking

D Batch Servers Outage in CIS

• Batch Servers Outage: Simultaneous breakdown of a cluster of related servers


- Services Catastrophic Interruption
- Networking Outage

Background


□ Cloud Infrastructure Systems (CIS)

Internet Data Center (IDC)

D Batch Servers Outage in CIS

• The life cycle of a batch servers outage diagnosis

Outline

D Background

Empirical Observations & Problem Formulation

Methodology Design

D Evaluation

D Conclusion

RQ1: Can monitoring data collected in a CIS adequately describe failures, if not, how to obtain a more comprehensive failure profiling?

ID	Time	Device SN	Anomaly Type	Anomaly Content	Batch Servers Outage Incident Incident ID: 1633525 Occurence Time: 22/03/25 21:33:26 - 22/03/25 21:57:48	AC Refrigerant Replace Change Change ID: 23665 Operation Time: 22/03/25 18:25:30 - 22/03/25 18:27:55
00	22/03/25 21:12:06 22/03/25 21:12:07	XX_632 XX_225	anomaly circuit group interrupt	temperature: 42.5°C partial interrupt	Location: RACK: R.43-A.22-HZ.116	Location: ROOM-A.22-HZ.116 Relative Devices SN: XX_302,XX_306
08	22/03/25 21:13:22 22/03/25 21:13:22	XX_764 XX_046	network device state anomaly high cpu utilization	psw offline cpu utilization: 77%	-	Change Content: Replace the refrigerant of the air
69	22/03/25 21:13:22	XX_046	high cpu utilization	cpu utilization: 82%		Change Reason: Abnormal cooling of air conditioner

An <u>Alert</u> Sequence

A Servers Outage Incident A Refrigerant Replace Change

RQ1: Can monitoring data collected in a CIS adequately describe failures, if not, how to obtain a more comprehensive failure profiling?

• Analysis of monitoring data quality:

Failure Type	Incident	Change	Alert	#Failures	_		
Switch Reboot	Ń			4	_		
Temperature Anomaly	\checkmark		\checkmark	126	ڪل	•	Genuine failures
Refrigerant Replacing		\checkmark		1	للع		related outage
PSU Power Outage	\checkmark			2			related outage
High CPU Utilization			\checkmark	305			
Partial Network Loss			\checkmark	206	_ _	•	Irrelevant failures

Table I: Analysis of monitoring data quality.

RQ1: Can monitoring data collected in a CIS adequately describe failures, if not, how to obtain a more comprehensive failure profiling?

• Analysis of monitoring data quality:

Failure Type	Incident	Change	Alert	#Failures	=	
Switch Reboot	 ✓ 			4	_	
Temperature Anomaly	 ✓ 		\checkmark	126	न्द्रों। •	Alert flooding
Refrigerant Replacing		\checkmark		1		2
PSU Power Outage	 ✓ 			2		
High CPU Utilization			\checkmark	305		
Partial Network Loss			\checkmark	206	_	

Table I: Analysis of monitoring data quality.

RQ1: Can monitoring data collected in a CIS adequately describe failures, if not, how to obtain a more comprehensive failure profiling?

• <u>Analysis of monitoring data quality:</u>

Failure Type	Incident	Change	Alert	#Failures		
Switch Reboot	\checkmark			4	_	
Temperature Anomaly	\checkmark		\checkmark	126	•	R
Refrigerant Replacing		\checkmark		1		
PSU Power Outage	\checkmark			2		
High CPU Utilization			\checkmark	305		
Partial Network Loss			\checkmark	206		

Table I: Analysis of monitoring data quality.

Repeat report

• Omission report

RQ1: Can monitoring data collected in a CIS adequately describe failures, if not, how to obtain a more comprehensive failure profiling?

• Analysis of monitoring data quality:

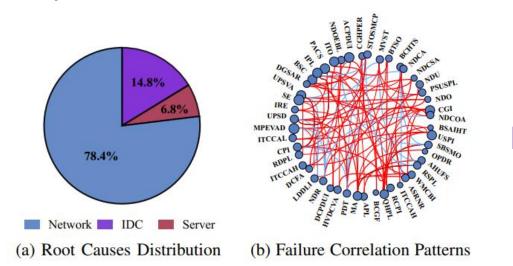
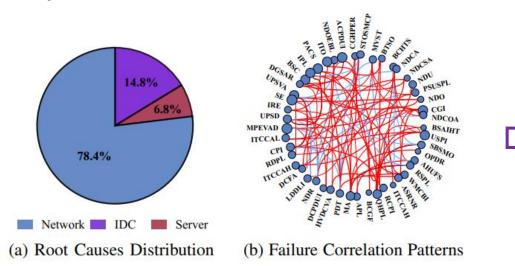

Failure Type	Incident	Change	Alert	#Failures
Switch Reboot	Ń			4
Temperature Anomaly	\checkmark		\checkmark	126
Refrigerant Replacing		\checkmark		1
PSU Power Outage	\checkmark			2
High CPU Utilization			\checkmark	305
Partial Network Loss			\checkmark	206

Table I: Analysis of monitoring data quality.

Single-source monitoring data are insufficient to reveal all suspicious failures, synchronous analysis of multi-source monitoring data is imperative.

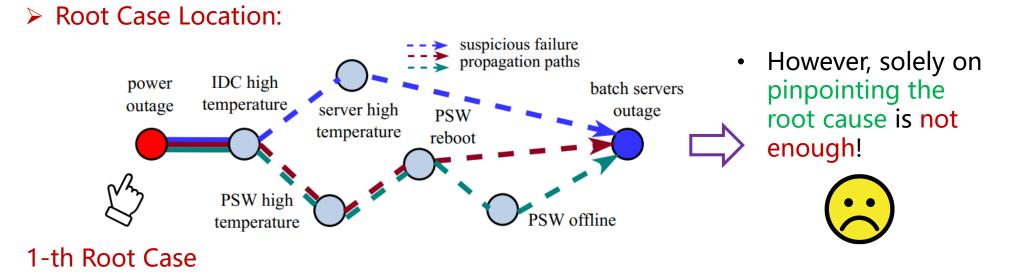
□ RQ2: What is the cause of batch servers outage, and what is the correlation mechanism between failures?


• Analysis of failure correlation:

- Cross-domain network failures and IDC failures are the primary root causes.
- Batch servers outage often results from concurrent multi-domains failures.

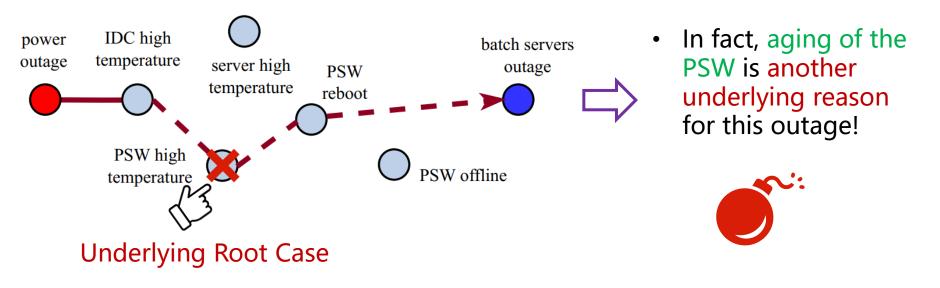
□ RQ2: What is the cause of batch servers outage, and what is the correlation mechanism between failures?

• Analysis of failure correlation:

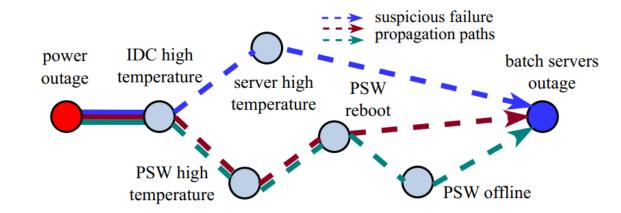


- Cross-domain network failures and IDC failures are the primary root causes.
- Batch servers outage often results from concurrent multi-domains failures.

It is crucial to develop a failure correlation measurement technique that can model failure correlations from a global perspective.

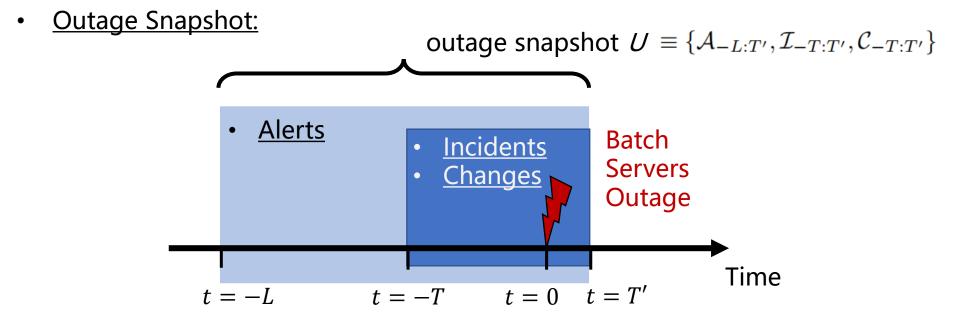

RQ3: What are the necessary diagnostic results for real-world applications?

• Analysis of Efficient Troubleshooting:


RQ3: What are the necessary diagnostic results for real-world applications?

- Analysis of Efficient Troubleshooting:
- > Failure propagation path inference:

RQ3: What are the necessary diagnostic results for real-world applications?


• Analysis of Efficient Troubleshooting:

Providing the interpretable diagnosis results that include both root cause failure and failure propagation path is necessary for troubleshooting.

Problem Formulation

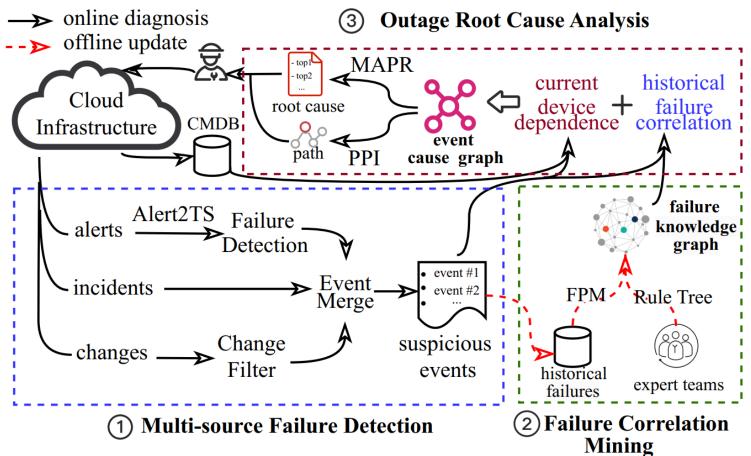
D The Batch Servers Outage Diagnosis Problem:

- <u>Failure detection sub-problem takes</u>: detects all outage-related events E in U $\mathcal{F}: U \mapsto E = \{e_1, \dots\}$
- <u>Outage root cause analysis sub-problem takes</u>: locates the root cause set e_r and infers the failure propagation path p_U

$$\mathcal{M} \colon E \mapsto \{e_r, p_U\}$$
 8/20

Outline

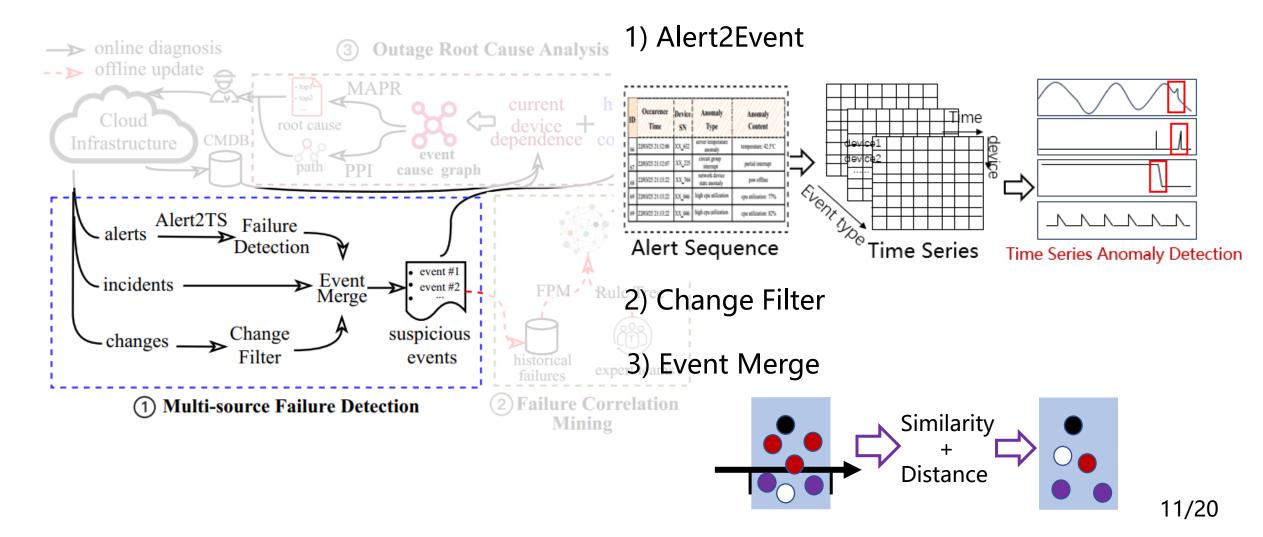
D Background


D Empirical Observations & Problem Formulation

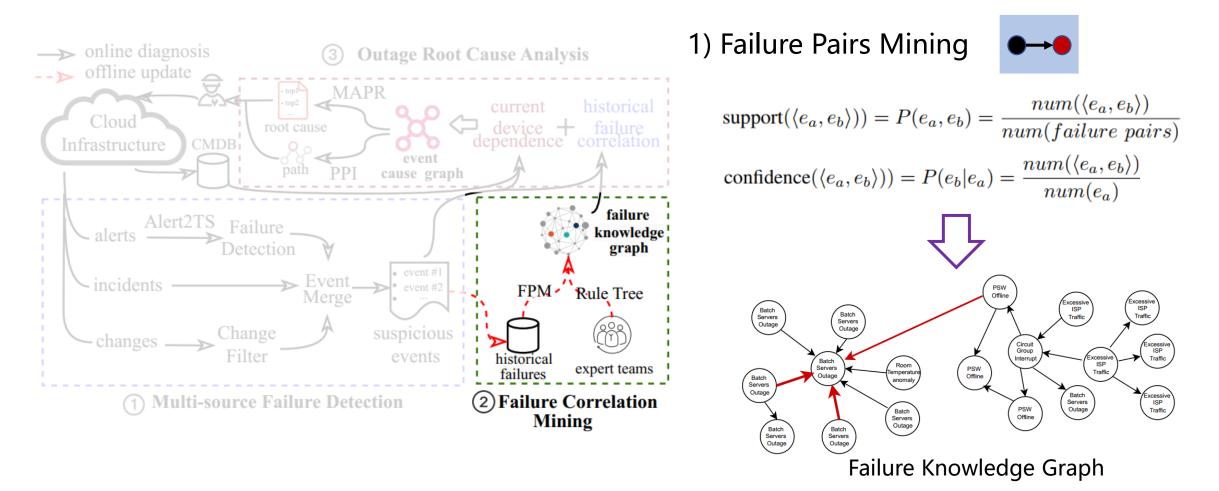
☐ Methodology Design

D Evaluation

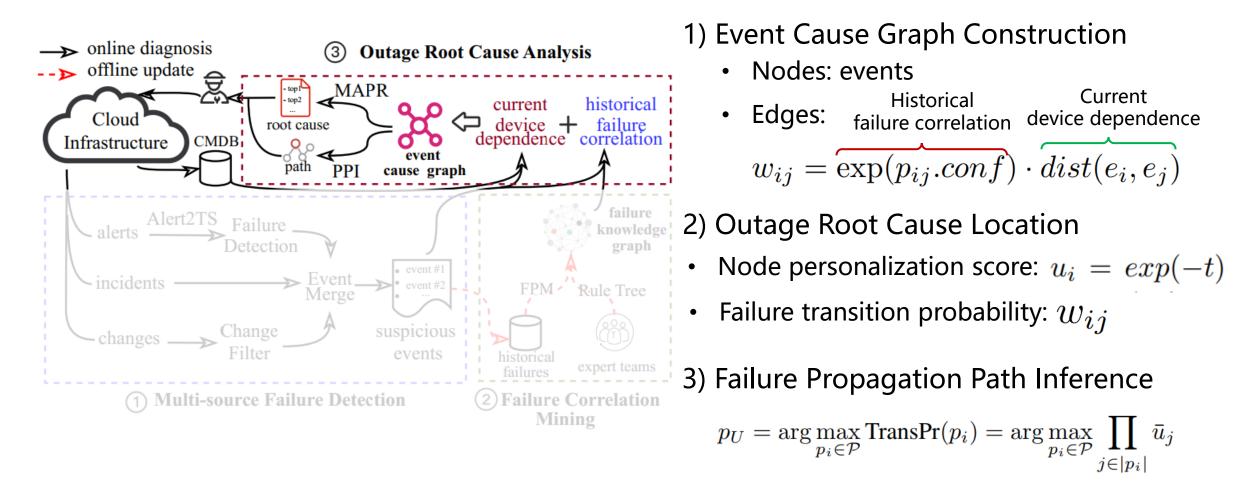
D Conclusion


Overview

- Multi-source Failure Detection: detect outage-related failures from alerts, incidents, and changes.
- Failure Correlation Mining: discover the failure correlations reflected in historical data.
- Outage Root Case Analysis: delivers interpretable diagnostic results using event cause graph.


Model Detail

Multi-source Failure Detection Module


Model Detail

D Failure Correlation Mining Module

Model Detail

Outage Root Cause Analysis Module

Outline

D Background

D Empirical Observations & Problem Formulation

Methodology Design

Evaluation

D Conclusion

Datasets:

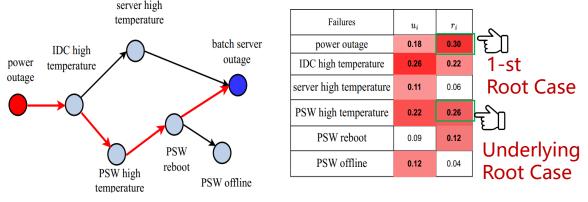
 We built a large-scale testing platform in Alibaba CIS and collected all monitoring data in this testing platform from January 2022 to December 2023

#Outage #Failure #Incident #Alert #Change Dataset Types Cases \mathcal{D}_{init} 19,020879,870 3,2552762 \mathcal{D}_{idc} 256, 2121,6571731931774,63847 \mathcal{D}_{net} 4785,09144 \mathcal{D}_{all} 6651,032,8517,6445668

Table II: Datasets statistics

□ Performance in Root Case Location task: BSODiag improved by 9.3%, 8.4%, 10.2%, and 9.3% on the PR@1, PR@2, PR@3, and MAP.

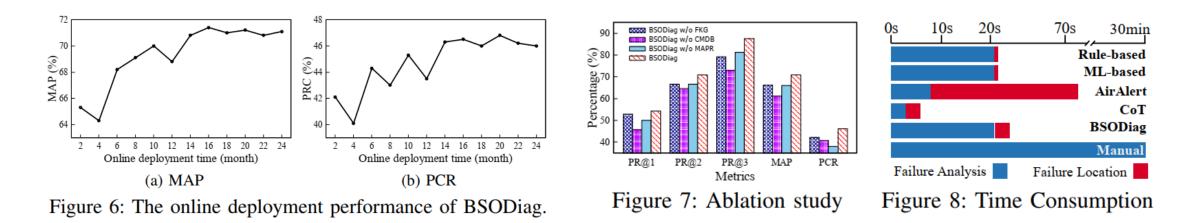
Methods	\mathcal{D}_{idc}				\mathcal{D}_{net}				\mathcal{D}_{all}			
wiedious	PR@1	PR@2	PR@3	MAP	PR@1	PR@2	PR@3	MAP	PR@1	PR@2	PR@3	MAP
Random Selection	14.3%	31.2%	42.6%	39.4%	8.7%	23.8%	36.4%	23.0%	10.4%	28.8%	39.6%	25.4%
Hierarchy-First	12.6%	27.5%	46.3%	28.8%	13.9%	37.8%	66.4%	39.4%	12.5%	35.4%	62.5%	36.8%
Time-First	22.5%	42.6%	53.8%	39.6%	41.2%	56.0%	73.7%	57.0%	35.0%	52.0%	70.1%	52.4%
SVM	32.0%	44.6%	62.5%	46.4%	27.4%	44.2%	65.3%	45.6%	27.8%	43.9%	66.1%	45.9%
Random Forest	39.2%	58.8%	72.0%	56.7%	41.4%	57.9%	71.4%	56.9%	42.6%	58.7%	74.3%	58.5%
AirAlert	18.5%	30.9%	41.0%	30.1%	28.0%	43.2%	53.6%	41.6%	24.5%	38.7%	48.8%	37.3%
COT	46.3%	66.0%	82.7%	65.0%	40.8%	57.5%	72.2%	56.8%	44.9%	62.4%	77.3%	61.5%
BSODiag (ours)	56.1%	72.9%	88.2%	72.4%	52.4%	70.7%	86.7%	69.9%	54.2%	70.8%	87.5%	70.8%


Table III: Comparison of different methods for RCL task

Proposed unsupervised diagnosis strategy based on the event cause graph is more suitable for the outage diagnosis problem

Performance in Failure Propagation Path Inference: BSODiag achieves 46.3% PCR, showing an improvement of 6.1%, 12.5%, and 3.7% compared to the other baselines.

Table IV: Comparison of different methods for PPI task.


Dataset				
Dataset	DPS	SPS	FHM	BSODiag(ours)
\mathcal{D}_{idc}	38.0%	35.2%	41.8%	45.6%
\mathcal{D}_{net}	41.6%	32.4%	43.3%	46.8%
\mathcal{D}_{all}	40.2%	33.8%	42.6%	46.3%

Case study

<u>BSODiag can provide explainable diagnosis results</u>, which prompts practical <u>Troubleshooting</u>.

Online Deployment Evolution & Ablation Study

- In actual online deployment, as more failure data are collected, we can continuously update BSODiag to optimize its performance
- BSODiag achieves a single diagnosis of an outage case in 24.5 seconds, marking a substantial improvement over the traditional manual diagnosis

Outline

D Background

D Empirical Observations & Problem Formulation

Methodology Design

D Evaluation

Conclusion

Conclusion

We formulate the batch servers outage diagnosis problem. Our empirical study on a large-scale cloud system uncover the key insights of this problem.

■We propose BSODiag, an unsupervised and lightweight diagnosis framework to address the problem.

We collected real-world data from Alibaba Cloud infrastructure system and demonstrate that BSODiag outperforms all alternative methods.

Thanks for listening!

Paper Link

duantao@stu.xjtu.edu.cn