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✓ Product Recommendation

✓ Networking QoS Improvement 

✓ Malicious Intrusion Detection

… 

Application:

 Two core performances for sequence data classification:

• Earliness

• Accuracy

current observations

total sequence length
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Earliness = observations/sequence length



Problem Formulation
 Tangled Key-Value Sequence Early Classification Problem:

• Given a tangled key-value sequence:

• Each key-value sequence sharing a same key:

Our Target: classify each       within      both early and accurately.
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 Tangled Key-Value Sequence Early Classification Problem:

• Given a tangled key-value sequence:

• Each key-value sequence sharing a same key:

Our Target: classify each       within      both early and accurately.

Earliness: Accuracy:vs. Earliness: Accuracy:vs.

Stop Stop

 Challenges: Earliness and Accuracy are two conflicting goals.
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Motivation

 The multi-objective optimization of“earliness-accuracy”

When?
Earliness: Accuracy:&

 Decompose it to two targets:

• how to learn an informative representation from partial observations?

• how to  adaptively determine the number of observations for each     ?      
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 The multi-objective optimization of“earliness-accuracy”

When?
Earliness: Accuracy:&

 Decompose it to two targets:

• how to learn an informative representation from partial observations?

• how to  adaptively determine the number of observations for each      ?      

✓ formulate it as the Partially Observable Markov Decision Process (POMDP), 
and solve it through a halting policy. When？
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Overview

Key-Value sequence Early Co-classification (KVEC) framework
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Model Detail

 Key-Value Sequence Representation Learning (KVRL) module
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 Early Co-classification Timing Learning (ECTL) module

wait:

halt:sample action from

halting policy
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 Multi-objective Optimization

• minimize the prediction error of the classification network

• maximize the accumulate reward gained by the policy network 

• encourage early prediction 

Total Training Loss:
11/19
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 Datasets:

• USTC-TFC2016: malware and intrusion network traffic dataset

• MovieLens-1M: movie rating dataset 

• Traffic-FG / Traffic-App: service-level / App-level traffic dataset

• Synthetic-Traffic: synthetic network traffic dataset

Evaluation
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 Metrics:

• Earliness

• Accuracy, Precision, Recall, F1-score

• HM: harmonic mean of Accuracy and Earliness, measure the multi-

objective balancing ability of different methods. 

Evaluation
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◆ KVEC has a better early classification performance and a better multi-
objective balancing ability. 

Evaluation
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 Results: KVEC achieves 4.7−17.5% accuracy improvement, 
3.7−14.0% HM improvement.



 More Discussions
Evaluation

◆ The advantages of KVEC primarily comes from the proposed 
representation learning. 16/19
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 Formulate the tangled key-value sequence early classification
problem. 

 We propose the KVEC framework to solve this problem which 
mainly consists of two core modules, i.e., KVRL and ECTL.

 Extensive experiments conducted on both real-world and 
synthetic datasets demonstrate that KVEC outperforms all 
alternative methods. 

Conclusion
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Thanks for listening!

Paper Link

duantao@stu.xjtu.edu.cn


